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Abstract

The mathematical techniques used in quantum mechanics are applied to simple
examples  of  random  variables.  This  illustrates  many  of  the  mathematical
features  of  quantum  mechanics  without  confusing  them  with  the  physical
content of the theory. The mathematical postulates of quantum mechanics can
then be presented as plausible extensions of these ideas. 
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A first course in quantum mechanics (QM) can seem conceptually difficult at first. There are two 
principle obstacles. The first is the new physics involved: the photon nature of light, the wave 
nature of electrons, the uncertainty principle, the quantisation of energy levels and so on. The 
second obstacle is the mathematical framework used by quantum mechanics: vector spaces, state 
vectors, commutators, probability amplitudes and so on, as fully outlined by Dirac [1]. It is easy to 
confuse these two aspects of QM and come to view them as inseparable. This paper applies the 
mathematical methods of QM to a series of simple examples and so helps to isolate the mathematics
from the physics. 

The style is intentionally informal and certainly not rigorous. It is not intended to be a course on 
QM. Rather, it is intended as supplementary material that helps to make the postulates of QM seem 
more plausible. In a typical QM course it might be introduced just after outlining the need for QM 
but before listing the postulates themselves.

1. Summary of Probability Theory and Linear Algebra

The amount of probability theory we require is minimal and will be illustrated with examples. A 
more detailed coverage of probability and statistics is available in a host of introductory texts, such 
as Boas [2] or MIT [10].

Suppose we take an ordinary six sided die. Assuming the die is fair, when we throw the die we 
would expect an equal probability of any particular side landing face up. So if we throw the die 60 
times, we would expect, roughly, 10 outcomes to correspond to each side of the die, perhaps a few 
more for some and a few less for others. As we steadily increase the number of throws, we expect 
the proportion of throws corresponding to each face of the die to approach 1/6. We say that the 
probability of measuring each particular value is 1/6.

In terms of notation, if d is the value of the die that lands face up, then we write:

P(d = i) = 1/6,  i=1,2,3,4,5,6

Why Quantum Mechanics is (mostly) Obvious 1/26



We read this as “the probability that d = i is 1/6”.

The probability of a particular outcome does not always have to be the same as all other possible 
outcomes. Continuing with the example of the die, suppose we are interested in values where d > 2. 
There are four ways that this could happen: 3,4,5,6, out of the six possible die values. So

P(d > 2) = 4/6 = 2/3,
P(d <= 2) = 2/6 = 1/3.

Notice that, as in the case of our first die example, the total probability of all possible outcomes is 
always one: at least one of the outcomes is certain to happen. This is an example of a probability 
distribution. It is the set of all probabilities for all possible outcomes. It’s values always add up to 
one.1

The value of the die that lands face up is an example of a random variable. Anything that can be 
measured can be regarded as a random variable, even something that we think we know with 
absolute certainty. An absolutely certain outcome is simply a measurement of a random variable 
with a probability of one. A completely impossible outcome has a probability of zero. So when we 
state that a measurement is made of a “random” variable, we are not prejudicing our assumptions: 
random does not mean equally likely, and could mean certain or impossible or anything in between. 
It all depends on the probability distribution.

Sometimes the probability of a particular outcome depends on the conditions. For example, we can 
write P(d = 2) = 1/6. This assumes that all values of the the die are equally likely. Now suppose 
someone else throws the die and then hides the value from us. They do tell us that the value is even,
however. The probability of the die showing 2 is now quite different. There are only three even 
values. In this case we write:

P(d = 2 | d is even) = 1/3. 

This should be read as “the probability that d is 2, given that we know d is even, is 1/3.” We will 
find that almost all probability calculations in QM are conditional probability calculations. 

That is all the probability theory that we need to know for the examples in this paper. Next we have 
a brief look at vector spaces and linear algebra. This is necessarily a minimalist overview of the 
subject. For more comprehensive coverage see any good introductory text on quantum mechanics, 
such as Binney and Skinner [3] or Griffiths [4] or Shankar [6].

I will assume that you are already familiar with the concept of vectors  in either 2D or 3D space. 
You may even be familiar with 4D vectors in Minkowski space. A vector space is just a 
mathematical generalisation where any fixed size set of numbers behaves like the components of 
geometrical vectors. The fixed size can be any positive integer and is called the dimension of the 
vector space.

We can write any vector as a row or as a column, listing its components. e.g. In a 5 dimensional 
vector space we might have a row vector (1, 2, 3.14, 2.72, -1). We can add two row vectors or two 
column vectors just by adding their components. We can multiply a vector by a number simply by 
multiplying all of its components.

1 The notion that all the probabilities in a distribution add up to one is a convention, but it is a convention that is so 
useful and so universally adopted that there is no reason to deviate from it. 
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Any vector can be written as a sum of its components times the corresponding basis vectors. Basis 
vectors are just unit length vectors along each dimension of the vector space. e.g. The above row 
vector can be written:

(1, 2, 3.14, 2.72, -1) = 

1 x (1,0,0,0,0) + 
2 x (0,1,0,0,0) + 
3.14 x (0,0,1,0,0) +
2.72 x (0,0,0,1,0) –
1 x (0,0,0,0,1).

If we call the components of a vector vi and the basis vectors ei, then the vector v can be written as:

v=∑
i

v i e i . (1)

Suppose we have a function L that acts on a vector v and results in a new vector w in the the same 
vector space. L is defined to be a linear function if:

w=L(v)=∑
i

vi L(ei) . (2)

i.e. The function L slides past the component values and acts directly on each of the basis vectors. 

As w is a vector, it has components wj.

w j=∑
i

v i
[L(e i)] j=∑

i

W ji v
i . (3)

Where Wji is the j’th component of the action of L on the basis vector ei. 

This final expression is just the rule for multiplying the matrix W into the vector v. The bottom line  
of all this is that we can always represent a linear function on a finite dimensional vector space by a
matrix. With this rule at our disposal we are now ready to look at some examples.

2. The Six Sided Die

Let’s return to our six sided die. In this case, the act of measurement means throwing the die on a 
table and observing the value that eventually appears face up. To model the die we’re going to use a
six dimensional vector space. This six dimensional vector space has six basis vectors: e1,…,e6. Each
basis vector corresponds to one value of the die. So if the value 1 is face up then the state of the die 
is represented by
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e1=[
1
0
0
0
0
0
] . (4)

If the value 2 is face up then the state of the die is represented by

e2=[
0
1
0
0
0
0
] . (5)

Similarly, each of the possible measurement values 1 through 6 is represented by the basis vectors 
e1 through e6. Each basis vector points entirely along one axis of the six dimensional space. The e1 
vector points entirely along the “one’ness” direction, with no components in the “two’ness” or 
“three’ness” etc. directions. Similarly, the ei basis vector points entirely along the i’th direction.     

Next we’re going to invent a measurement operator for the die. Call it D. (Operators will be 
shown in capital bold typeface.)  This has all the possible measurement values on the diagonal and 
zero everywhere else.

D=[
1 0 0 0 0 0
0 2 0 0 0 0
0 0 3 0 0 0
0 0 0 4 0 0
0 0 0 0 5 0
0 0 0 0 0 6

] (6)

Using ordinary matrix multiplication, the operator D can act on any of the basis vectors to produce 
the measured value corresponding to that vector times the same vector again. For example:

[
1 0 0 0 0 0
0 2 0 0 0 0
0 0 3 0 0 0
0 0 0 4 0 0
0 0 0 0 5 0
0 0 0 0 0 6

] [
0
0
1
0
0
0
]=3 [

0
0
1
0
0
0
] . (7)

And in general:

D en=nen . (8)
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An equation like this is called an eigenvalue equation. The number n is called the eigenvalue and 
the vector en is called the eigenvector. Note that if en is an eigenvector with eigenvalue n, then any 
multiple of en, such as 3en, is also an eigenvector with the same eigenvalue.  These are all treated as 
the same eigenvector.

The eigenvectors form a complete set. This means that any vector can be expressed as a linear 
combination of the eigenvectors.

Somewhere near the start of every quantum mechanics textbook, there is a list of postulates that all 
of quantum mechanics is based on. One of these will say something like this.

An observable in quantum mechanics is represented by a measurement operator.  The 
possible outcomes of a measurement are the eigenvalues of the measurement operator and 
the allowed states of the system when a measurement has taken place are the corresponding 
eigenvectors.

This statement can seem puzzling if you haven’t encountered this aspect of linear algebra before. 
But as you can see from the simple example of the die, it’s really very straightforward. 

In the case of the die, we deliberately constructed the measurement operator to be a diagonal matrix 
with eigenvectors that had only a single component. This is not always the case, as we will see 
shortly.

3. Operator Equations

Suppose we are playing a game and the rules of the game specify that we throw a die, but instead of
using the value that results, we use the square of the value instead. Call the value on the die d and 
square of the value s. i.e. s = d 2. We can model this as follows.

D ed=d ed

⇒D(D ed)=d D ed=d2 ed

(9)

Remember that D is just a matrix. We can apply it twice to a vector or we can square it and apply 
the result of the matrix squared.

⇒D(D v )=D2
(v) (10)

Using this rule in (9) we get.

D2 ed=d2 ed (11)

Clearly we can extend this to model any power of the eigenvalue. We can add powers together to 
build polynomials.

(D3
+D2

+5 I )ed=(d3
+d2

+5)ed (12)

Why Quantum Mechanics is (mostly) Obvious 5/26



We can even take suitably convergent infinite series such as exponentials or trigonometric 
functions.

(D−
1
3 !

D3
+

1
5!

D5
+...)ed=sin(D)ed=sin(d)ed (13)

Diagonal matrices like the D operator, are easy to manipulate this way: if you multiply a diagonal 
matrix by itself you just get another diagonal matrix. e.g.

D2=[
1 0 0 0 0 0
0 4 0 0 0 0
0 0 9 0 0 0
0 0 0 16 0 0
0 0 0 0 25 0
0 0 0 0 0 36

] sin (D)=[
sin(1) 0 0 0 0 0

0 sin(2) 0 0 0 0
0 0 sin (3) 0 0 0
0 0 0 sin (4) 0 0
0 0 0 0 sin (5) 0
0 0 0 0 0 sin (6)

] (14)

However, even if the matrix is not diagonal, we can still take powers and form power series.

If we give a name to the D2 operator, call it S say, then the numeric equation:

d2
=s (15)

Can be replicated in the operator equation:

D2 ed=S ed (16)

This ability to manipulate operators in many of the same ways as we do numbers, enables us to 
build equations from operators. We will use this in the final section of this paper to build the 
Schrödinger equation.

4. Comparing Vectors and Introducing Dirac Notation

One of the things we can do in geometry is compare one vector to another by forming their dot 
product. You will probably be familiar with the formula:

a⃗ . b⃗=|⃗a||⃗b|cos (θ)=∑ ai b
i . (17)

We can use the sum of components version to generalise this to vectors of any dimension. 

Notice that the components on vector b are given upper indices and the components on a are given 
lower indices. Basically, upper indices means they are components of a column vector and lower 
indices means they are components of a row vector.2 So one way of writing the dot product of two 
3D vectors would be:

2 You might see column vector components being referred to as contravariant and row vector components as 
covariant. If you want to remember which ones are upper and which ones are lower indices, just remember that “co
is low”.
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a⃗ . b⃗=[ a1 a2 a3 ][
b1

b2

b3] . (18)

In our examples so far, upper and lower indexed components are numerically identical, just 
arranged vertically or horizontally when written out. We will see examples shortly where this is not 
the case.

The dot product is a measure of how similar two vectors are. If a and b are vectors that point in the 
same direction then the result is just the product of their magnitudes. If a and b are at right angles 
then their dot product is zero. As we are representing states of a random variable by vectors, the dot 
product therefore gives us a handy way of comparing two states.

Because the dot product compares two vectors it is sometimes referred to as the overlap between 
them: the bigger the overlap between their components, the more similar they are. This is a 
description that I will use a lot. 

At this point it is worth switching to Dirac notation. This was introduced by Paul Dirac in his 
seminal work on quantum mechanics [1]. In Dirac notation, the vector ei is written |i> and instead of
being called a column vector it is called a ket. The terms “vector” and “ket” are used 
interchangeably. So in Dirac notation, the eigenvalue equation for our simple die is written:

D|n ⟩=n|n ⟩ (19)

where |n> is a column vector. The corresponding row vector is written <n| and is called a bra. So 
for example:

ket   |2 ⟩=[
0
1
0
0
0
0
] ↔ bra  ⟨2|=[0 1 0 0 0 0 ] (20)

Instead of writing the overlap of two vectors as a.b, we write them instead as a bra and a ket back to
back: <a|b>. This is called a bra-ket (this was Dirac’s little joke). Here are a couple of examples.

⟨1|1 ⟩= [1 0 0 0 0 0 ] [
1
0
0
0
0
0
]=1 ⟨1|2 ⟩= [1 0 0 0 0 0 ][

0
1
0
0
0
0
]=0 (21)
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As you can see the overlap of <1| with itself, |1>, is unity. It’s overlap with any other basis ket is 
zero.

Aside. You might want to think about what happens when we multiply a column vector into a row 
vector. For a two dimensional vector space we get the following matrix.

|a ⟩ ⟨b|=[a1

a2
] [b1 b2 ]=[a1 b1 a1b2

a2 b1 a2b2] (22)

If you do this with the basis vectors you get the following.

|1 ⟩ ⟨1|=[10 ] [1 0 ]=[1 0
0 0]

|2 ⟩ ⟨2|=[01] [0 1 ]=[0 0
0 1]

(23)

We can add these two matrices together.

|1 ⟩ ⟨1|+|2 ⟩ ⟨2|=[1 0
0 1]=I (24)

The general expression 

∑
i

|i ⟩ ⟨ i|=I (25)

where i is over the dimension of the vector space, is used frequently in QM.  

If we multiply |i><i| by the corresponding eigenvalue, and sum over all values of i, we get the 
measurement operator. For example, for the die measurement operator:

D=[
1 0 0 0 0 0
0 2 0 0 0 0
0 0 3 0 0 0
0 0 0 4 0 0
0 0 0 0 5 0
0 0 0 0 0 6

]=1|1 ⟩ ⟨1|+2|2 ⟩ ⟨2|+...+6|6 ⟩ ⟨6| (26)

5. Kets and Probabilities

Let’s look at the state |3>. This represents the state where the die has come to rest with the value 3 
face up. This is a completely known state, so the probability of observing a 3 if we look at it again 
is 1. The probability of all other values is zero. But these are precisely the components of 
<3| = (0,0,1,0,0,0). (We’re showing the row vector for convenience.) This suggests that we can 
relate the components of a ket to the probabilities of the possible states. 
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Most of the time, we will want to calculate the probability of a particular state given it’s current 
state. i.e. The conditional probability that we described in section 1. To compare one state to 
another we take their overlap. The maximum overlap happens when the two vectors are identical, 
while an overlap of 0 means they have nothing in common at all. 

If the die has come to rest in a state |i>, we can ask if it is in the state |3> by forming it’s overlap 
with |3>. <3|i> = 1 if the die is in state |3>, and it is zero if the die is in any other state. These are 
exactly the conditional probabilities we would expect: if the die has landed and is in the state |3>, 
then the probability of finding it in state |3> is clearly 1 and the probability of finding it in any other
state is zero.

So far, the only states of our die that we have identified are the states corresponding to the basis kets
|i>, where the die has come to rest and the number i is showing face up. How would we represent 
the state where the die has just been thrown, it is tumbling unpredictably through the air, and the 
final outcome is unknown?

Let us define the following state.

|u ⟩=
1
√6 [

1
1
1
1
1
1
] (27)

The “u” stands for “unknown”. This is quite different from all the states we have seen so far. It isn’t 
an eigenstate of the D operator. It has equal amounts of “oneness” “twoness” and so on. Such a 
general combination of the basis vectors is called a state vector or a state ket. These can be basis 
vectors or any linear combination of basis vectors.

First look at the fraction that multiplies the ket. This is chosen so that if we calculate the overlap of  
|u> with itself we get <u|u> = 1. This is consistent with our interpretation of the overlap as a 
conditional probability. The probability of the die being in the state |u>, given that it is already in 
the state |u>, is: P(u | u) = <u|u> = 1.

When <u|u> = 1, we say it that |u> is normalised. This condition guarantees the correct conditional 
probability when we take the overlap of a vector with itself. We can always put a constant in front a 
state vector so that it is normalised, i.e. it’s overlap with itself is 1.

Suppose the die is in the state |u>. Can we get the probability of it ending up in the state |3> say? If 
we first take the overlap between the two states, we get.
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⟨3|u⟩=[ [0 0 1 0 0 0 ] 1
√6 [

1
1
1
1
1
1
]]= 1

√6
(28)

To get the correct probability we have to square this. 

⟨3|u⟩
2
=[ [0 0 1 0 0 0 ] 1

√6 [
1
1
1
1
1
1
] ]

2

=
1
6

(29)

The reason we have to square the overlap is simple. Consider a normalised state 

<x| = (a,b,c,...).

As it is normalised, <x|x> = 1. i.e.

⟨x|x ⟩=[a b c ... ][
a
b
c
⋮
]=a2

+b2
+c2

+ ...=1 (30)

So it is the sum of the squares of the components that equals 1. Clearly the probability distribution 
is also formed from these squares. i.e. P(a) = a2.

Now suppose we take the overlap of |x> with one of the basis vectors.

⟨1|x ⟩=[ [1 0 0 ... ][
a
b
c
⋮
]]=a . (31)

i.e. The overlap gives us the result, a, which we know is not the probability of a. So we take its 
square instead. (The reason we didn’t have to square things in the previous examples is simply 
because 12 = 1 and  02 = 0, so squaring would make no difference.) 

Clearly, we can compute probabilities of any of the six die values in a similar way. In this case, no 
matter what eigenvector of D we use, we will always get the value 1/6.
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This generalises quite easily. If the die is in state |b> (normalised to 1) and we want to know the 
probability that we will measure state |a> (also normalised to 1), then we just compute <a|b>2. In 
symbols:

P(a | b) = <a | b>2.

As another example, suppose the die has almost come to rest and the outcome is not quite certain 
but it’s going to be one of: 1, 3 or 5, with the first two being even more likely. The probable 
outcomes might be reflected in a state vector like the following:

|s ⟩=1
3 [

2
0
2
0
1
0
] . (32)

The probability of 3 landing face up is now.

⟨3|s ⟩2
=[ [0 0 1 0 0 0 ] 1

3 [
2
0
2
0
1
0
]]

2

=
4
9

(33)

This brings us to the second postulate that is found near the start of most QM textbooks.

The state of a system in quantum mechanics is represented by a state vector. The probability 
of any given measurement is given by the square of the overlap between the state vector and 
the corresponding eigenvector.

Again, if you haven’t seen this before, it can seem like a deeply mysterious statement. But as you 
can see, any random variable whose possible outcomes are encoded as a vector space, will 
demonstrate similar properties.

6. Probability Amplitudes

As seen above, the state vector can be viewed as a kind of square root of a probability distribution. 
It is sometimes referred to as a probability amplitude, although the term can also be used for an 
individual component of the state vector. This is yet another name that refers to exactly the same 
object as a “ket”, which is the same as a “state vector” (which is the same as a “wavefunction”, but 
we haven’t used that term yet). They’re all the same thing. When one term is used rather than 
another it is just to emphasise a particular aspect of the same object. So if someone refers to a “state
vector” then they probably intend to concentrate on its properties as an element of a vector space. If 
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the same object is referred to as a “probability amplitude” then it is because they want to emphasise 
that it is the square root of a probability distribution. 

Sometimes we want to find the probability amplitude for a state that is some composite of the 
eigenstates. The |u> state is an example of this. Let us return to the example where someone throws 
the die, allows it to land and then observes its value, but they only tell us that the value is an even 
number. To construct a representation of this state we simply take all the possible even states, add 
them together, and normalise the result.

|2 ⟩+|4 ⟩+|6 ⟩=[
0
1
0
1
0
1
] → |e ⟩≡ 1

√3 [
0
1
0
1
0
1
]

Our rule for calculating probabilities remains the same: take the overlap with the state whose 
probability we want, and square the result. For example, if we want the probability of the value 
being 6, given that the state is known to be even:

⟨6|e ⟩
2
=[ [0 0 0 0 0 1 ] 1

√3 [
0
1
0
1
0
1
] ]

2

=
1
3

which is exactly what we would expect.

What about the probability of throwing an even value in the first place? Again, we apply our rule of 
taking the overlap of the even state with the unknown state:

⟨e|u ⟩
2
=[ 1

√3
[0 1 0 1 0 1 ] 1

√6 [
1
1
1
1
1
1
]]

2

=[
3

√3√6
]
2

=
1
2

The normal rule for adding probabilities is to take the probabilities of the individual, mutually 
exclusive, independent events, and add them together. There are three events that give an even 
number: namely throwing the values 2, 4 or 6, each with a probability of 1/6. Adding these 
probabilities together gives 3 x 1/6 = 1/2. This is the same as we obtained by creating the even state,
|e>, by adding the amplitudes, and then applying our overlap squared rule. As we will see later, this 
is not always the case in QM, and this is one of the things that makes the subject so interesting.
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The even state, |e>, is an example of the superposition rule: if a condition can be reached in more 
than one way, then add together all the probability amplitudes that correspond to that condition to 
get the correct state.

This rule is used all the time in QM. For example, in the double slit experiment, where a photon can
arrive at a location via two distinct routes, we add the amplitudes for those two routes to determine 
the probability that it will arrive at the final destination.

7. The Meaning of Superpositions and the Collapse of the Wavefunction

The exact meaning of states that are superpositions of eigenstates is not always well defined. 
Suppose we are told that the die is in the |u> state. We previously interpreted this state as the die 
tumbling through the air. In this case it genuinely is not in one of the eigenstates of the die 
measurement operator, D. 

However, suppose the die lands and is immediately covered with a cloth so that we cannot see its 
value. The die now has a definite value, it is in one of the D operator eigenstates, we just don’t 
know which one. To calculate probabilities, we have to treat the die as if it is still in the |u> state 
because we have no idea which state it is really in. So the |u> state can represent two distinct 
physical situations. There is the case where it is genuinely not in an eigenstate of the D operator, 
and there is the case where it is in an eigenstate of the D operator but our lack of knowledge means 
we have to treat it as if it is in the   |u> state.

The formalism presented so far cannot distinguish between these two cases, yet the distinction is 
vital. A die tumbling through the air evolves quite differently over time to a die that is stationary 
and covered by a cloth. This is true in general. A system in a superposition of states will usually 
evolve in time quite differently from a system in a particular eigenstate. 

In most situations in QM we have to deal with a system which is in a genuine superposition of 
states. Indeed, we will see shortly that most quantum systems are always in a superposition of 
states. This is arguably the single most unique and important aspect of QM, that systems are 
normally in a state where they have multiple positions, multiple momenta, multiple energies,  
multiple just about everything.

In the die example, the die is initially in a superposition of eigenstates, |u>. While in the state, |u>, 
the die has no definite value. Eventually it  comes to rest in one of the eigenstates |i>. We then 
observe which eigenstate it is in and measure a definite value. This change from a superposition to 
an eigenstate is often referred to as the “collapse of the wavefunction”. 

In the case of the die, the collapse of the wavefunction is trivial, it is simply a reflection of the die 
coming to rest. We have only defined one type of measurement, namely the value on the die, and 
one type of eigenstate. When we come to systems with more than one measurement operator, and 
different sets of eigenstates, this becomes much more interesting.

In QM, the act of measurement itself forces a system into an eigenstate of the corresponding 
measurement operator. If we are determined to measure a position then the system will oblige by 
moving from a state which is a superposition of position states, into a state with a definite position. 
This is often expressed as a postulate of QM.
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A measurement of a system causes the state of the system to collapse from a superposition of 
states into an eigenstate of the corresponding measurement operator. 

On the basis of our only example so far, this does not seem like a particularly profound statement. 
However, the effect in QM can be very strange.

For example, you will find in your QM course that a moving electron is in a wave like eigenstate of 
momentum (we will briefly explore this later). A stationary electron, on the other hand, adopts a 
single large “spike” corresponding to its single, fixed, position. So when a moving electron is 
brought to rest so that its position can be measured, it moves from the wave like momentum 
eigenstate, to the spike-like position eigenstate. In this case, the “collapse of the wavefunction” is 
really just a switch from an eigenstate of momentum to an eigenstate of position. This has been 
summarised by some as “electrons propagate as waves but interact as particles.”

A good example of the weirdness of wave function collapse is illustrated by the Einstein, Podolsky, 
Rosen problem.[7] Two particles with zero total angular momentum go off in opposite directions. A 
measurement of the spin of one collapses the wave function for the two particle system. This 
then instantaneously affects the spin measurement of the other particle, no matter how far apart they
are. Experiment confirms that this really does happen, and due to a theorem by John Bell, it can be 
shown that no “local hidden variable” can account for this.[8]

There doesn’t appear to be any obvious classical analogy of this kind of behaviour. I think it’s safe 
to say that the collapse of the wavefunction is an aspect of QM that is not yet fully understood.

8. Tossing a Coin

We now consider the toss of a coin that can land either heads up or tails up. On the face of it this 
looks like a much simpler situation than the six sided die. However, it will allow us to examine 
several additional aspects of this type of probability model.

As there are two possible measurements, we choose to represent them by a two dimensional vector 
space. Heads and tails are represented as follows.

|h ⟩=[10] |t ⟩=[01] (34)

Our measurement operator has the following form. (‘H’ stands for Heads or tails.)

H=[h 0
0 t ] (35)

Here, h and t can take on any two distinct values. I will choose the values +1 and -1 respectively. As
before, our measurement operator satisfies the eigenvalue equations.

H|h ⟩=h|h ⟩
H|t ⟩=t|t ⟩

(36)
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Suppose the coin is set spinning clockwise on its edge on a table. It is neither in an |h> state or a |t> 
state but has equal probability of ending up in either. We will label this state as |c>.

|c ⟩= 1
√2 [11] (37)

<c|c> = 1 as required by a normalised state vector, and P(h|c) = <h|c>2 = P(t|c) = <t|c>2 = ½, exactly
as expected.

Now consider the following state vector.

|a ⟩=
1
√2 [ 1

−1] (38)

This has all the same important overlaps as |c>: <a|a> = 1 , <h|a>2 = <t|a>2 = ½. Yet |c> and |a> are 
clearly very different vectors. In fact, they are orthogonal.

⟨a|c ⟩=
1
√2

[1 −1 ] 1
√2 [11]=0 (39)

They also form a complete set: any vector can be expressed as some combination of |c> and |a>. To 
see this we show that |h> and |t> can be formed from |c> and |a>:

|h ⟩=[10]=1
2 [11]+1

2 [ 1
−1]= 1

√2
|c ⟩+ 1

√2
|a ⟩ ,

|t ⟩=[01]=1
2 [11]−1

2 [ 1
−1]= 1

√2
|c ⟩−

1
√2

|a ⟩ .
(40)

As any vector can be formed from |h> and |t> it follows that any vector can be formed from  |c> and
|a>:

[ab]=a|h ⟩+b|t ⟩=a( 1
√2

|c ⟩+ 1
√2

|a ⟩)+b( 1
√2

|c ⟩− 1
√2

|a ⟩) . (41)

|c> and |a> are also eigenvectors of the following operator:

S=[0 1
1 0] .

S|c ⟩=+1|c ⟩ S|a ⟩=−1|a ⟩

(42)

So |c> and |a> are orthogonal, they form a complete set and they are the eigenvectors of the S 
operator. The S operator looks like it represents a measurement, but a measurement of what? I 
choose to have it represent the coin Spinning on its edge with two possible states: spinning 
Clockwise (the |c> state) or spinning Anti-clockwise (the |a> state).
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You might quite legitimately ask, how can I simply choose the operator and eigenvectors to mean 
whatever I want them to mean? Actually we have been making these sort of choices all along. The 
die operator, D, didn’t have to have all the numbers 1...6 in order, they could have been jumbled up. 
They didn’t even have to be the numbers 1...6, we could have chosen any distinct set of numbers 
and kept a mapping between those and the values on the die. All that mattered was that the 
dimension of the vector space matched the number of possible measurements. As long as we 
applied this consistently everything would still work. 

One of the differences between these simple examples and QM, is that in QM the measurement 
operators have meanings that are dictated by physics, not by our arbitrary choices. 

We now have two measurement operators, H and S, that can act on the same set of state vectors. 
These two operators have different sets of eigenvectors. This means that if the coin is in a definite 
H state (showing a definite side, i.e. |h> or |t>), then it cannot simultaneously be in a definite S state
(spinning one way or the other i.e. |c> or |a>). The converse is equally true: if the coin is spinning 
then it is not showing a definite side. This is the origin of the famous Heisenberg uncertainty 
principle. Wherever there are two measurement operators, acting on the same space of state 
vectors, but with mutually exclusive sets of eigenvectors, the uncertainty principle will come into 
play. 

Notice that the H and S operators do not commute.

HS=[1 0
0 −1] [0 1

1 0]=[ 0 1
−1 0 ]

SH=[0 1
1 0 ][1 0

0 −1]=[0 −1
1 0 ]=−HS

(43)

It’s easy to show that operators that share the same eigenvectors commute. Suppose A is an operator
with eigenvectors |ek> and eigenvalues ak. Now let B be a different operator, sharing the same 
eigenvectors but with eigenvalues bk. Then

A|ek ⟩=ak|ek ⟩
⇒BA|ek ⟩=B ak|ek ⟩=ak B|ek ⟩=ak bk|ek ⟩

(44)

but

B|ek ⟩=bk|ek ⟩
⇒ AB|ek ⟩=A bk|ek ⟩=bk A|ek ⟩=bk ak|ek ⟩

. (45)

As bk and ak are just numbers that commute, AB and BA always have the same effect.

If the two operators A and B do not share any eigenvectors, then it is equally easy to show that they 
do not generally commute. Suppose.

A|ek ⟩=ak |ek ⟩ (46)
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We are now assuming that |ek> are not eigenvectors of B. So when B acts on one of them it does not
return the same vector back. However the |ek>’s form a complete set, so the result of B acting on 
one of them will return a vector that can be built from some linear combination of |ek>’s.

B|ek ⟩=∑ ci|e i ⟩
⇒ AB|ek ⟩=A∑ ci|ei ⟩=∑ ci A|e i ⟩=∑ c ia i|e i ⟩

(47)

but

A|ek ⟩=ak|ek ⟩

⇒BA|ek ⟩=B ak|ek ⟩=ak B|ek ⟩=ak∑ ci|e i ⟩≠∑ c i ai|ei ⟩
. (48)

The commutator of two operators is defined as:

[H ,S]≡HS−SH . (49)

The fact that they do not commute can therefore be expressed as:

[H ,S]≠0 . (50)

You will find that the relationship between two operators is often expressed in terms of their 
commutator. 

Notice that only H is diagonal, with “simple” eigenvectors. There is nothing special about the H 
operator. We could choose to make the S operator diagonal instead. Imagine |h> and |t> as normal 
2D vectors lying along the x and y axes. We can rotate the x and y axes 45o clockwise so that they 
lie along the |a> and |c> vectors instead. The S operator will then be diagonal with eigenvectors 
corresponding to the basis vectors, and H will have the more complicated form. 
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9. The Pauli Matrices and Complex Numbers

The coin provided an example of two measurement operators acting on the same set of two 
dimensional vectors. We’re now going to look at an example of three measurement operators acting 
on a two dimensional vector space. Now it gets really interesting.

In this example, take a six sided die, paint three adjacent sides red, blue and green, and their 
opposite sides black. When we throw the die and it lands and comes to rest, it will therefore be in 
one of the following states:

1. Red facing up.
2. Red facing down.
3. Blue facing up.
4. Blue facing down.
5. Green facing up.
6. Green facing down.

We will model this as three separate measurements: red up or down, blue up or down, and green up 
or down. i.e. We have three mutually exclusive measurements, each of which has two possible 
states.

We’ve already seen how to model a two state observable in the coin tossing example and can follow
a similar course here. We take a two dimensional vector space and arbitrarily assign the eigenvalue 
+1 to the state where red is facing up and -1 to the state where red is facing down. We will call its 
measurement operator R and it’s eigenvectors |r+> and |r-> corresponding to red face up and red 
face down.

[1 0
0 −1][10]=+1 [10] → R|r+ ⟩=+1|r+ ⟩

[1 0
0 −1][01]=−1 [01] → R|r− ⟩=−1 |r− ⟩

(51)

Just as with the tumbling coin example, we can easily model a second, mutually exclusive 
measurement, blue, using the same basis vectors.

[0 1
1 0 ] 1

√2 [11]=+1
1
√2 [11] → B|b+ ⟩=+1 |b+ ⟩

[0 1
1 0 ] 1

√2 [ 1
−1]=−1

1
√2 [ 1

−1] → B|b− ⟩=−1 |b− ⟩

(52)

Note that, by symmetry, the magnitude of the “red up” and “red down” components in the blue 
eigenstates must be equal.

However, if we want to include the third measurement operator, the green up or down operator, then
we have a problem. Again, by symmetry the magnitude of the green eigenstates’ “red up” and “red 
down” components must be equal. But this would make them just a multiple of the blue eigenstates 
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when they should really be equal magnitude sums of them as well. There appears to be no way to 
include a third measurement operator – we’ve run out of numbers. The solution is to extend the 
allowed numbers in our vectors from the real numbers to the complex numbers (the following 
choice is not unique, but it’ll do the job).

|g+ ⟩= 1
√2 [1i ] |g− ⟩= 1

√2 [ 1
−i ] (53)

Note that, to get <g+|g+> = 1 and <g+|g-> = 0, we have to modify our rule for creating kets from 
bras. It’s not enough to turn the column vector into a row vector, we must also take the complex 
conjugates of the components as well.

⟨g+|g+ ⟩=
1
√2

[1 i ]
∗ 1
√2 [1i ]= 1

√2
[1 −i ] 1

√2 [1i ]=1

⟨g+|g−⟩=
1
√2

[1 i ]
∗ 1
√2 [ 1

−i ]= 1
√2

[1 −i ] 1
√2 [ 1

−i ]=0

(54)

In general, the overlap between two vectors can now be a complex number. To convert this to the 
probability of a particular outcome we must first take the absolute magnitude of the overlap before 
squaring it. For example, if the die is in an arbitrary state |a> and we want to calculate the 
probability that we measure |g+> then we must do the following.

|⟨g+|a⟩|
2
=| 1

√2
[1 i ]

∗[a1

a2
]|

2

=
1
2
|a1−ia2|

2
(55)

It can easily be shown that this rule works in general.

The presence of complex components means that we must now allow complex coefficients when 
adding together vectors. For example:

|g+ ⟩= 1
√2 [1i ]=1+i

2
1
√2 [11]+ 1−i

2
1
√2 [ 1

−1]=1+ i
2

|b+ ⟩+ 1−i
2

|b− ⟩ . (56)

The green measurement operator now takes the form:

G=[0 −i
i 0 ] . (57)

It’s action on the green eigenstates is as expected:
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[0 −i
i 0 ] 1

√2 [1i ]=+1
1
√2 [1i ] → G|g+ ⟩=+1|g+ ⟩

[0 −i
i 0 ] 1

√2 [ 1
−i ]=−1

1
√2 [ 1

−i] → G|g− ⟩=−1 |g− ⟩ .

(58)

We can relabel our three measurement operators as follows (the reason for relabelling them is so 
that we can refer to them by an index).

σ1=[1 0
0 −1] σ2=[0 1

1 0] σ3=[0 −i
i 0 ] (59)

These are the famous Pauli matrices. They are ubiquitous in any discussion of spin-1/2 particles. 
They have numerous interesting properties that you will explore in your QM course.

10. Continuous Distributions

Let’s go back to our normal die. Instead of the value that lands face up on our die, suppose we are 
interested in the horizontal position where the die lands on the table. We can suppose that the table 
is marked with equally spaced 5 cm strips and that the die always lands wholly within one of those 
strips. If the table is one metre long then there will be 20 possible positions where the die can land, 
so we will need a 20 dimensional vector space to model it.

[
5 0 ⋯ 0
0 10 0
⋮ ⋮
0 0 ⋯ 100

] [
0
1
⋮
0
]=10 [

0
1
⋮
0
] (60)

If we refine our distance measurement further, to a resolution of 1cm, then we will need a 100 x 100
measurement matrix and a 100 component vector. In the limit, the state goes from a discrete vector 
to a continuous function, f(x). The position operator X is then defined as follows.

X f (x )=xf (x ) (61)

This should be read as the position operator X, acting on the state f(x), returns the position x times 
the state f(x). It has exactly the same form as the discrete eigenvalue equation. Unlike the examples 
we have been using so far, this really is an operator equation from QM.

Our previous die eigenstates consisted of vectors that had
five zeroes and one value where all the probability was
concentrated. Similarly, the eigenfunctions of equation (61),
f(x), are zero everywhere except at a single infinitely thin,
infinitely high, spike. (These are called Dirac delta
functions.) 
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We obtained these from a limiting procedure. In reality, physical objects do not occupy a single 
position3. Our die is not a mathematical point. It occupies a small range of positions with a width 
determined by its orientation. So its real physical state must be represented by a sum of position 
eigenstates. We will see the need to use sums of eigenstates repeatedly in what follows.

Just as with discrete state vectors, we form the overlap by summing all the components. In the limit 
that state vectors become functions, the components are just the values of the functions themselves. 
So if |a> and |b> are now functions (we use Dirac notation to label functions as well as vectors) then
the overlap is now given by:

⟨a|b ⟩=∫ a(x )b (x)dx . (62)

Just as with state vectors, these functions must be normalised.

⟨a|a ⟩=∫ a(x )a(x)dx=1 . (63)

With discrete vectors, the square of the components gave a probability distribution. With continuous
functions, the square of the function gives a probability density function.

Differential operators are linear operators. For example, if f(x) and g(x) are two functions of x, then:

∂
∂ x

(af +bg)=a ∂
∂ x

f +b ∂
∂ x

g . (64)

Can we interpret differential operators as measurement operators? Up until now we have known 
exactly what our measurement operators represented. Here we have a candidate for a measurement 
operator, but we have no idea what the derivative of the square root of a probability distribution 
could possibly represent. To find out we have to just go with it and see what turns up.

If we write down the eigenvalue equation for the derivative operator:

∂
∂ x

f (x)=k f f (x) (65)

where kf is the eigenvalue specific to the function f. The solution is:

f (x)=ek f x . (66)

If k is real, as we expect measurement eigenvalues to be, then this has several 
problems as a probability amplitude. It cannot be normalised over  (-∞, ∞) and 
has to be normalised over a fixed interval instead. But if we only look at the 
function over a fixed interval, we end up with something like the diagram to the 
left. There are continuity problems at the edges of this interval where the function
must suddenly jump to zero. 

3 Quantum field theory does represent particles as mathematical points, but this leads to its own problems.
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The principal problem however is the inability to construct an orthogonal set of eigenvectors. If m 
and n are two real eigenvalues then, regardless of the range of integration.

⟨m|n⟩=∫ emx enx dx≠0 (67)

However, if we allow the exponent to be imaginary then things are very different.  

f (x)=ei k x
=cos(k x)+isin (k x) (68)

This is still not normalisable over (-∞, ∞). However, with suitable boundary conditions, and taking 
appropriate linear combinations of solutions (e.g. ie-ikx - ieikx = 2 sin (kx) ), it can at least be arranged 
to be zero at the ends of a finite interval, thus providing continuity with the value zero outside the 
chosen interval. In many cases this requirement will only work for complete half cycles of the sin or
cos functions, leading to quantisation of the allowed values of the space derivative operator.

It’s worth noting that we had to take a sum of two eigenstates to get a 
workable solution. A single eigenstate by itself would not satisfy 
reasonable boundary conditions.

Another advantage of the ieikx solutions is that they have constant 
magnitude of one: | ieikx | = 1. If we want to construct an equal 
probability density function then this property is essential. Clearly this 
cannot be with real trigonometric functions.

In order to get a real eigenvalue, which we require in order to treat it as 
an observable measurement, we have to modify the differential operator.

−i ∂
∂ x

ei k x
=−i(ik )e i k x

=k e i k x
(69)

Just as when complex numbers became part of our discrete vectors, our definition of the overlap 
must now change:

⟨a|b ⟩=∫ a∗
( x)b(x )dx . (70)

Notice that, once again, complex numbers have made their way into the theory for quite prosaic 
reasons: if the differential operator represents an observable quantity then we need complex 
numbers to prevent the probability amplitudes associated with it from being exponential. This in 
turn implies that there is a “wavy” aspect to any such probability amplitude. In the die example this 
is clearly unexpected and quite counter-intuitive: there doesn’t seem to be anything even remotely 
“wavy” about a die. It is this wavy aspect that leads to the term wavefunction to describe states (to 
add to state vector, state ket, and probability amplitude). We will see shortly that the position 
derivative eigenstates have a surprising physical interpretation.

Why Quantum Mechanics is (mostly) Obvious 22/26



Note that we can still have arbitrary probability amplitudes of position. It is only the eigenstates of 
the position derivative that are now being constrained. Provided these form a complete set (which 
they do), then just as with the discrete eigenvectors for the die value, we can still built any 
probability amplitude we please from them. 

If the probability amplitudes vary with time as well as space, then the derivative with respect to 
time is also a linear operator. Just as we did for the position derivative operator, we can define an 
eigenvalue equation for the time derivative operator. For exactly the same reason, the 
eigenfunctions of the time derivative must also be complex and we get the time derivative equation.

i ∂
∂ t

e−iω t
=i(−iω)e−iωt

=ωe−iωt .4
(71)

We can combine the time and space solutions to get the standard wave equation.

f (x , t)=ei (kx−ωt ) (72)

The time derivative eigenvalues also turn out to have a surprising physical interpretation.

11. Quantum Mechanics

To summarise so far. If we take a random variable, with a discrete set of possible values, and map 
this set to the basis of a finite dimensional vector space, we quickly discover that the resultant state 
vectors can be treated like probability amplitudes. The overlap between two vectors allows us to 
compare states, and the square of the overlap between a basis vector and an arbitrary state gives us 
the probability of measuring the value corresponding to the basis vector. 

The possible outcomes of a measurement are given by the eigenvalues of its measurement operator. 
The value of a measurement is only certain when the state is one of the measurement operator’s 
eigenvectors.

If two or more measurement operators share the same set of state vectors, but have different sets of 
eigenvectors, then the two measurements cannot be known simultaneously. 

If we have three measurement operators each with only two states of equal probability then we must
introduce complex numbers in order to give the third measurement operator its own eigenvectors.

We can treat continuous variables as the limit of this process. The partial derivatives of continuous 
amplitudes are candidates for measurement operators. However the eigenvalue equations of 
derivative  operators lead to exponential solutions unless we once again introduce complex 
numbers.

We can establish all of the above without a single experiment. To progress from an abstract 
mathematical theory to QM we must now include some physics. We will start with the Einstein-
Planck hypothesis, that the energy of a photon is given by:

4 The “-” sign is due to the convention that we treat right moving waves as moving along the positive x axis. It’s a 
convention that also comes in handy when we do relativistic QM and we want time and space to have opposite 
signatures.
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E=hν=ℏω . (73)

The amplitude of a wave of frequency ω has the form: y = sin(-ωt) = Im (e-iωt), which we 
immediately recognise as an eigenstate of the time derivative operator. To convert the time 
derivative operator into an energy operator, all we need is the addition of Planck’s constant.

i ℏ ∂
∂ t

e−iω t
=iℏ ∂

∂ t
e−i E t /ℏ

=E e−i E t / ℏ
(74)

Note that, to be an eigenstate of a derivative operator, the function must be complex if we are to 
avoid exponential solutions.

This is one of the fundamental postulates of QM: that the energy operator is given by:

E=i ℏ ∂
∂ t

. (75)

Louis de Broglie took the Einstein-Planck hypothesis a step further. He wondered if the 
wavefunction e-iEt/ℏ, in addition to applying to a photon, could also apply to a massive particle at 
rest.[9] It is then a simple matter to perform a Lorenz boost. The t coordinate splits into mixed time 
and space x coordinates, while the energy E splits into mixed energy and momentum p coefficients. 
This results in the wave function:

e i( px−Et)/ ℏ . (76)

Where the wavelength is given by:

px
ℏ

=
2π x
λ

⇒λ=h / p . (77)

Once again, we see that the space part of this is just an eigenstate of the space derivative operator. 
As we did with time and energy, we can now define a momentum operator.

P=−i ℏ ∂
∂ x (78)

One way of looking at all of this is that we have made a number of speculative leaps whose only 
justification is based on whether they work or not (they do). This includes the Einstein-Planck 
hypothesis, the de Broglie hypothesis, and  the jump from a real wave to complex eigenstates of a 
position probability amplitude. 

Another way of looking at it is as follows.

1. The position of a particle is as valid a random variable as any other. (Remember: modelling 
something as a “random variable” in no way prejudices our assumptions.)

2. As demonstrated above, this inevitably means it has a position probability amplitude.
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3. We define the eigenvalues of the complex time derivative operator (up to Planck’s constant) 
to be something that we call “energy”.

4. We define the eigenvalues of the complex space derivative operator (up to Planck’s 
constant) to be something that we call “momentum”.

5. We can show (as part of a QM course) that taking averages of these energy and momentum 
values correspond to the classical definitions of energy and momentum.

In other words, attempting to reconcile our classical notions of mechanics with QM via a series of 
speculations is really looking at things the wrong way round. It is QM which is the more logical 
model of mechanics. Classical mechanics arises from QM only as a large scale approximation.

It’s worth observing that the link between the derivate operators and energy and momentum is not 
quite as surprising as it may at first seem. Suppose we have an infinitely differentiable function of x,
f(x). To find the value of the function at f(x+ε), we can Taylor expand it.

f (x+ϵ)=f (x)+
df
dx

ϵ+
1
2 !

d2 f
dx2 ϵ

2
+.. .

=(1+
d
dx

ϵ+
1

2 !
d2

dx2 ϵ
2
+ ...) f

=(ei (−i ϵ
d
dx

)) f

(79)

i.e. We can achieve a translation in the x direction by exponentiating the x derivative operator. The x
derivative operator is the generator of translations. We know from Noether’s theorem, which tells 
us that every symmetry implies a conservation law, that translation invariance implies conservation 
of momentum. So there is a link between translations and momentum even in classical physics. 

Similarly, the time derivative operator is the generator of (backwards) time translations and the 
conserved property associated with time translation invariance is energy.

We have not yet fully established the correspondence between the space derivative operator and 
momentum, or between the time derivative operator and energy. However, if we simply take these 
as further postulates of QM, we can combine them with some simple classical ideas. In particular, 
we can taken the equation of energy conservation.

E=
p2

2 m
+V (80)

where E is the total energy of a particle, V is its potential energy due to a conservative force and p is
its momentum. As we indicated before, the same relationship exists between operators as between 
their measured values. So if we have a probability amplitude Ψ(x,t) and we act upon it with our 
energy and momentum operators, we get:

i ℏ
∂Ψ(x ,t )

∂ t
=

−ℏ
2

2m
∂

2
Ψ(x , t)

∂ x2 +V Ψ(x ,t) (81)

which is the famous time dependent Schrödinger equation. 
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And now, hopefully, your QM course will make a great deal more sense.
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